Differentiating Anterior Shoulder Pain In The Overhead Athlete

Angela T. Gordon PT, DSc, MPT, COMT, OCS, ATC
Stacy Soapmann PT, DSc, FAAOMPT
Objectives

- Identify the possible causes of anterior shoulder pain:
 - Scapular dyskinesis
 - Posture
 - Spinal facilitation
 - Muscular trigger points
 - Lower kinetic chain dysfunction

- Case studies from major league players

- Define regional interdependence as it relates to the overhead athlete
 - Cervical
 - Thoracic
 - Scapula
 - SC joint
 - AC joint

- Evaluation of the kinetic chain in overhead athletes
Dynamic Scapula: Kinematics

- 3 rotations, 2 translations
 - Rotations
 - upward and downward rotation
 - internal and external rotation
 - anterior and posterior tipping

- Translations
 - superior and inferior
 - protraction and retraction
Dynamic Scapula

Stability dependent on 3 major factors

• Muscular and Neural Control Systems

• Muscular Activation System

• Boney and Ligamentous Restraints
Kibler defines scapular dyskinesis as:

- A loss in scapular retraction and ER with altered timing and magnitude of upward scapular rotation. This leads to an anterior tilt of the glenoid and subsequent reduction in RTC force.

SICK Scapular

- **Scapular Malposition**
- **Inferior medial border prominence**
- **Coracoid pain and malposition**
- **Dyskinesis of scapular movement**
Scapular Dyskinesis Clinical Features

- Overuse muscular fatigue syndrome
- Pectoralis tightness, LT/SA force couple weakness
- Inferior and or medial border prominence
- Anterior tilting of the scapula
- Decrease in shoulder internal rotation
Kibler Classification of Scapular Dysfunction

- Inferior angle dysfunction
- Medial border dysfunction
- Superior scapular dysfunction
- How do we classify this scapular dysfunction
What Causes Scapular Dyskinesis

- Spine
 - All muscles innervated by cervical nerve roots
 - Thoracic mobility
- Underlying GH pathology
- Muscle imbalance
 - Posture
 - Overuse of sport demands
- Previous injury
 - Instability
 - Loss of proprioception
Trivia: How many muscles attach to the Scapula
Glenoid Labrum

- Functions:
 - Deepen the GH socket to aide in shoulder stability? Or
 - Sensitive proprioception organ for the shoulder girdle providing feedback for movement in all 3 degrees of freedom
 - Described in a clock like fashion
 - Bankart Lesion – 3/6 position
 - SLAP: superior
 - Posterior Reverse Bankart 6/9
Glenoid Labrum

- Signs and symptoms of a glenoid labrum:
 - Pain accompanying overhead arm motion
 - Instability with or without clicking
 - Decreased range of motion
 - Loss of strength
 - Pain Anteriorly or posterior
 - Internal Impingement signs
Posture

Janda’s Upper Crossed Syndrome

- Weakened: Deep Neck Flexors
- Uninhibited Overactive: Pectoral Group
- Uninhibited Overactive: Upper Trapezius, Levator Scapula
- Uninhibited Overactive: Scapular Stabilizers, Retractors & Depressors

- Sway Back
- Lumbar Lordosis
- Thoracic Kyphosis
- Forward Head
- Good Posture
Case Study One

- Olympic potential Swimmer
 - Diagnosis Bicep tendinitis
- Evaluation Findings:
 - Forward head posture
 - Weak scapular force couples: SA LT
 - Scapular dyskinesis
 - Protracted Ant Tilted scapula
 - Weak Core
 - Hypermobile in all planes
- Treatment
 - Scapular stabilization
 - Proprioceptive training
 - Neuro reeducation in the unstable overhead position
- What about the Biceps?
Muscular Trigger points

- What is a Trigger point?

- Symptoms:
 - local tenderness
 - referred pain
 - local twitch response

- Shoulder:
 - Infraspinatus: muscular overload, eccentric forces during follow through
TrP Shoulder Region

- Other muscles that refer to the anterior shoulder
 - Deltoid
 - Pectoralis major/minor
 - Scalenes
Case Study Two

- MLB pitcher complains of pain duration 5 months
 - Improves with rest
 - Aggravated by pitching
 - Points to local spot in anterior shoulder
 - All labral tests negative
 - No signs of impingement
 - Strength: scapular retraction test positive, infraspinatus 4+/5, Serratus 4+/5, Lower trap 4+/5
 - TrP: infraspinatus, deltoid, Teres Major/Minor

- Treatment: TDN to infraspinatus and Deltoid
 - 90% resolution of pain in 1 session
 - Return to painfree Pitching 1 week later
Squirrel
Regional Interdependence

- Cervical facilitation
- C2/3 Hypomobility
- Biceps Tendonitis
- Thoracic/Rib dysfunctions
Cervical Facilitation

- Elevation/Protraction
 - Latissimus Dorsi (C5/6)

- Elevation/Retraction
 - Serratus Anterior (C5/6, C6/7)

- Depression/Protraction
 - Levator Scapulae (C2/3, C3/4, C4/5)
 - Rhomboid

- Depression/Retraction
 - Pectoralis Minor (C6/7, C7/11)
 - Serratus Upper Fibers
C2-3 Hypomobility

- Clinically a very common injury we see is a post-traumatic arthritis of the C2-3 region.
- Following a MVA if the R C2-3 gets “stuck” or becomes hypomobile and the L side becomes hypermobile this can causing increased tone in the Llevator scaplae
- What does this do to the scapula positioning?
Biceps Tendonitis

- Innervated by C6
- When you look at the anatomy the C6 nerve root exits between the C5-6 segment
- The C5-6 segment has the smallest foramen hole and the C5-6 nerve root is the largest
- If stenosis or osteophytes occur then it can affect the innervation of the bicep
Thoracic/Rib dysfunctions

- No agreed upon consensus about the combined movements of the thoracic spine
- Some authors state that if you elevate your R arm you will get extension and ipsilateral rotation/SB of the R side of the thoracic spine
- What would hypomobility of the thoracic spine do to the mechanics/timing of the shoulder girdle movement?
Case Study Three

- MLB Pitcher
- Biceps Pain ongoing
- Evaluation:
 - Scapular Dyskinesis
 - UT/LS hypertonicity
 - Csp/Tsp scan: Right
 - C2/3 hypomobility
 - T1-3 rotation limited
 - C5/6 hypermobile
 - C2/3 hypomobility
 - T1-3 rotation limited
 - C5/6 hypermobile

- Tender Biceps tendon – resisted MMT improves with repetition

- Treatment:
 - 3 sessions
 - Csp manipulation
 - Tsp manipulation
 - TFM to Biceps
 - Scapular/Cervical stabilization program
The thrower's shoulder must be lax enough to allow maximal external rotation but stable enough to prevent symptomatic humeral head subluxations, thus requiring a delicate balance between mobility and stability functionally.
It is important to understand that while these athletes are throwing with their arms, they gain a large amount of momentum and force through the use of their legs and torso.
Kinetic Chain Dysfunction

- Lower Extremity
 - Hip IR/ER ROM
 - Weakness

- Core:
 - TA must be first muscle activated prior to UE movement

- Scapula:
 - Funnels the energy from LE to UE
Evaluation of Kinetic Chain

- No Gold standard
- Difficult to evaluate
- Time constraints
- Evidence limited
Evaluation of Kinetic Chain

- What we do know:
 - All the links in the chain are important
 - Timing is everything
 - Scapula is the key component
 - Core – is the proximal STABILITY to allow for all extremity MOBILITY
Evaluation of Kinetic Chain

- Upper Extremity:
 - Scapular:
 - Kibler scapular retraction test
 - Kibler lateral scapular slide test
 - Flip sign
 - Strength: prone LT seated SA
 - Length tests
- Shoulder
 - ROM: IR/ER supine at 90 degrees abduction – 2 person measurement
- Posture
- Lower Extremity:
 - SFMA – general screen used to identify areas of dysfunction
 - Hip
 - ROM prone with knee at 90 degrees IR/ER – 2 person measurement
 - Strength: Hip Abd, ER, Extension
- Core
 - Strength: DKLTo abdominal brace test
What can lead to Anterior Shoulder Pain in the Overhead Athlete?

- Scapular dyskinesis
- Glenoid Labrum
- Postural adaptations
- Muscular Trigger points
- Regional interdependence from spinal segments
- Biceps Tendonitis
- Kinetic Chain Breakdown
Differential Diagnosis of the Overhead Athlete

Labrum vs TrP
- Weakness
- Use of TDN to reproduce pain
- Treatment at same time
- Stability Tests
 - O’Brien
 - Sulcus
 - Relocation
 - Clunk

Regional Interdependence vs Biceps tendonitis
- Any history of cervical dysfunction
- Referred pain vs local pain
- Histological changes from changes in axonal transport
Differential Diagnosis of the Overhead Athlete

- Use of dry needling for differential diagnosis?
- What leads to TrP in the shoulder girdle?
- Proper use of special tests clusters for better specificity?
- Evaluating the kinetic chain?
- Identify breakdown point
- Throwing all arm?
- Previous history of injury anywhere in kinetic chain
Principles of Integrated Functional Kinetic Chain Rehab

- Establish proper postural alignment
- Achieve motion in all involved segments
 - Total arc of motion
- Facilitate scapular motion
- Achieve proper scapular stabilization
 - Endurance strength vs power strength
- Utilize closed kinetic chain exercises
 - Integrate core into upper extremity dynamic exercises
- Work in multiple planes
References

References

